
Bypassing Firewalls: Tools and Techniques

Jake Hill<jah@alien.bt.co.uk>

March 23, 2000

Abstract

This paper highlights a very important problem with network perimeter fire-

walls. The threat discussed is not exactly new, but neither is it widely recognised—

even amongst network security professionals.

Most commercial firewalls claim to be application layer devices, but they de-

rive very little useful information about the context of the application traffic that

passes through them. Malicious applications can misuse even the simplest pro-

tocols in a way that totally bypasses the firewall’s controls. This paper describes

the methods of simple protocol tunnels, and shows how they can be applied. It

also considers ways to counter this threat, and suggests that architectures based on

military security principles and IPSec can improve security dramatically.

Keywords: firewalls, protocol tunnelling, IPSec, security.

1 Introduction

Firewalls are regarded as the primary defence mechanisms when connecting private

networks to the Internet. There are various types, but firewalls essentially control ac-

cess at the application and transport layers, often using application layer information

to make access control decisions. A firewall is there to stop unwanted traffic from the

Internet entering the protected network. In a similar way, it can also control traffic

flowing out on to Internet.

A firewall is a perimeter security mechanism. It has no control over what occurs on

the internal network. It simply screens any connections made between the inside and

the outside. The only information the firewall has about a particular connection, are the

source and destination addresses and port numbers. This is not enough to reason about

the information that is being communicated. Indeed, it is very easy to fool a firewall

1



into allowing a protocol that it is supposed to be blocking—either by changing the port

numbers associated with that protocol, or by using a protocol tunnel.

The remainder of this paper introduces protocol tunnelling and shows how easily

it can be used to bypass a firewall. It then goes on to consider how this threat can be

countered. The reader will notice that this discussion does not suggest ways of strength-

ening the firewall. It focuses instead on in-depth mechanisms, which complement the

perimeter firewall. These mechanisms are based on a combination of military-style

trusted systems, and on IPSec network security.

1.1 Related Work

Independent work on protocol tunnelling was done almost simultaneously by Laars

Brinkhoff [5]. The architecture described in section 3 builds on work by Landwehr

et al. at Naval Research Laboratories [9], and by Dalton, Clark, and others, at HP

Laboratories [1, 2, 3, 13].

2 Protocol Tunnelling

A protocol tunnel encapsulates one protocol inside another. Tunnelling is a general

technique which can be used to carry a protocol across a foreign network. It is of-

ten used to join two isolated networks with a privatebridgeacross a public network,

forming a VPN (Virtual Private Network). Most commonly, IP traffic is encrypted and

encapsulated in a TCP stream, which is carried across the public Internet between two

remote sites.

Any protocol can be exploited for tunnelling. The only requirement is that the

protocol is permitted by any firewall that sits between the tunnel end points. Protocols

like SMTP and HTTP generally satisfy this requirement. Others, like ICMP-ECHO

(the “ping” protocol), are also allowed by most configurations.

2.1 Bypassing Firewalls

A protocol tunnel can turn an application layer protocol (such as HTTP, or SMTP) into

a transport layer protocol. This can make it very hard for the firewall to reason about

the traffic passing through it.

One tool designed to exploit this fact is GNU httptunnel, which is available under

GNU Public License. This tool creates a point-to-point HTTP tunnel, but it can be used

2



in conjunction with other software (such as SSH and Telnet) to provide unrestricted

access through a firewall. Users at sites with restrictive firewall policies can enable

protocols that are blocked by tunnelling them through HTTP.

The obvious problem caused by tools such as this is that the firewall policy no

longer dictates the overall security policy. Although users must take a conscious deci-

sion to invoke applications like htc and hts1, it is ultimately the users who can decide

which particular protocols will cross the firewall.

2.2 Simple Tunnel

Far more nefarious scenarios are possible, such as one demonstrated recently at BT

Laboratories. The Simple Tunnel2 is another general purpose tunnel developed inde-

pendently to GNU httptunnel, but at about the same time. It was built as part of a

demonstrator, designed to highlight the threat that tunnelling poses to network security

[6].

Like GNU httptunnel, the Simple Tunnel also uses HTTP as a transport, although it

could easily be extended to almost any client-server protocol. However, it is packaged

as a library and not as an application—it is designed to be built in to other applica-

tions. This library, called libtunnel, provides a channel for passing arbitrary messages

between the tunnel endpoints. This messaging system can be used in higher level li-

braries and applications, for communicating with a remote host.

The operation of the Simple Tunnel is illustrated in fig. 1. The client and server

queue messages at each end of the tunnel. The client makes periodic connections to

the server. These connections are HTTP-like, in that the exchange follows the basic

protocol of [7]. The algorithm used by the client is as follows;

1. If the client has messages to send, it makes an HTTP POST request to the server.

The messages are encoded and sent in the body of the request3. Otherwise,

2. if the client has no messages to send, it makes an HTTP GET request to the

server.

3. If the server has any messages to send, they are encoded and returned in the body

of the response.
1These are GNU httptunnel’s client and server applications.
2The name belies the fact that the software is actually rather complicated.
3The client could instead use HTTP GET and encode the messages in the URL of the request.

3



Server Client
HTTP

Request

Response

Server
application

Client
application

libtunnel

SendReceive SendReceive

Figure 1: The Simple Tunnel library

The client can be configured to use a proxy, which allows it to work across an

application-layer gateway. In addition, the server can manage tunnels to multiple

clients simultaneously. The applications at each end of a tunnel use a simple API

[12] to read and write messages, and also to control some of the tunnel characteristics.

The Simple Tunnel library has been used in some example applications. One of

these is a remote socket library, called librsocket. It uses the messaging provided by

libtunnel to tunnel system calls to the network stack of the client. The librsocket API

[10] is very much like the standard socket API [11]. It was chosen because it is fairly

simple, very useful, and implemented on a wide range on platforms. But almost any

API on any machine can be tunnelled in the same way. The technique gives the attacker

full access to the resources of a remote host.

While protocol tunnelling is a very powerful tool to use against firewalls, an at-

tacker from outside must install client software on a machine behind the firewall. It is

fortunate for the attacker that there are a great many ways this could be done, either by

exploiting software vulnerabilities, or by social-engineering attacks. Some examples

might be;

Remote exploit. A remotely exploitable bug in a program, which lets the attacker ex-

ecute arbitrary code, may be used to bootstrap installation of a tunnel client.

Trojan execution. A user might be tricked into running a tunnel client, thinking it was

something else.

4



Viral infection. A virus which can infect executable programs may contain a tunnel

client. Even a macro virus might be made to carry a tunnel client, if the macro

has access to networking functions.

This list of attacks is certainly not exhaustive, but it should illustrate that the job of

installing malicious client software is not particularly hard. Within each category of at-

tack, there are scores of real examples—the reader will find many of these documented

in the archives of bugtraq4 and CERT5.

To demonstrate a Trojan Horse attack, librsocket was used to build a special version

of the Mozilla browser. In the Macintosh version of this Trojan, this change required

the addition of a single line of code to the Mozilla source, and relinking with librsocket.

The resulting browser behaved in every way like a normal web client, except that it

also made regular connections to the tunnel server. Whenever a user ran the Trojan

browser, they unwittingly opened up the network stack of their machine for use by the

“attacker”.

3 Towards Defence in Depth

It has been said6 that, the total security of a system is worse than the security of the

weakest component in the system. This implies that the weak component in isolation

is less of a problem than when it is integrated as part of a system, which depends upon

the security of the weak component. It follows that, perimeter controls go only part

way to providing security for a private network connecting to the Internet. A firewall

can be bypassed if a host on the inside can be compromised.

As has been shown, a network of insecure systems can not have its security policy

enforced by a firewall alone. But the problem is not the ability of the firewall, it is the

security of the systemsbehindthe firewall. A strategy of “defence in depth” is critical

to preventing attacks such as the one just described. This term has gained popularity

recently and it often used to refer to host-based detection of viruses or intrusions. But

true in-depth defences should protectagainstthese attacks too. This section considers

the kind of “defence in depth” that is required to prevent a tunnelling attack.
4http://www.securityfocus.com/bugtraq
5http://www.cert.org/
6Perhaps by Bruce Schneier, perhaps by Carl Ellison.

5



3.1 Domains

Carroll and Landwehr [9] argue that the key characteristic of secure systems is their

ability to maintaindomainsfor storage and processing. A domain is a set of informa-

tion, andauthorisationsfor using that information. This notion stems from military

security. It is not criticalhowdomains are maintained, only that they can be prevented

from interfering with each other, and from interacting with each other in ways that

would violate the security policy.

The mechanisms to support “maintaining domains” can be implemented both in

hardware and in software. Software controls can exist both at the system level and

within applications. Whatis critical however, is that the controls work properly. This

may seem obvious—but any flaws in low level mechanisms can completely undermine

those at higher levels.

There are various examples of how these ideas can be applied to networked sys-

tems. Dalton and Clarke [2] have suggested how to allow secure access to LAN ser-

vices from Internet hosts. Choo [1] shows how to extend this idea, by segregating the

internal network in to VPNs running at different sensitivity levels. These, and other

related schemes [3, 13], make extensive use of trusted systems like the CMW (Com-

partmented Mode Workstation).

A CMW adheres to the U.S. government criteria laid down in [4]. It it designed to

enforce military security policy regarding the use of classified information. The CMW

differs from a “conventional” workstation in several ways, including;

Information labelling. All information is stored insegmentswith an attached label.

The label specifies thesensitivityof the information (e.g. SECRET, TOP SE-

CRET) and also itscompartment(e.g. NUCLEAR, COMMAND). The CMW

ensures that the labels can not be altered without the correct authority, and that

they are transmitted with the information across any network.

Access control. In addition to the normal concept of permissions, known as DAC

(Discretionary Access Control), the CMW enforces MAC (Mandatory Access

Control). This is the invariant security policy used by the military to control

sensitive information. The MAC policy cannot be changed or overridden7.

Privilege and authority. Rather than have a single “super-user”, the CMW has a set

of privileges and authorities which can be assigned to individual users and pro-
7It can be overridden, but only with the correct privilege.

6



grams. In a normal Unix system, common programs like ping and xterm need to

run as root because they perform privileged operations. The ping program, for

example, needs to open a raw network socket in order to send ICMP datagrams.

On a CMW, ping only requires the privilege to open a raw socket.

Authority is a concept which gives different users the ability to run certain dan-

gerous programs. Any user can run the ping program, but only the user with the

right authority can mount or unmount filesystems. Authority allows administra-

tion of the system to be delegated to a number of different users, none of which

have complete control of the system.

Audit capability. Logging provides a way of to audit the operation of the system. A

CMW kernel logs all the system calls that processes make to it. This logging

cannot be disabled. In addition, the CMW provides a way for applications to log

their own actions in a secure way.

The object oriented Java programming language is another technology that sup-

ports “maintaining domains”. In present day implementations, Java does this entirely

within one application—the Java Virtual Machine (JVM). Because of this, the Java en-

vironment is vulnerable to faults in the underlying machine architecture. Java objects

are prevented from interfering with one another but, very often, faults in applications

that co-exist with the JVM can interfere with Java objects. Thus, security in Java still

depends on trusted underlying systems.

3.2 Network Domains

A secure networked system needs to be able to maintain domains which span multiple

hosts. Choo proposes an IPSec [8] solution for segmenting the internal network. He

describes using CMW technology to enforce this segregation by running multiple IPSec

stacks, at least one at each sensitivity level. In his scheme IPSec runs as a user-space

process, which prevents stack errors affecting both other sensitivity levels, and also the

kernel. Note though, that a single ISAKMP daemon is trusted by all IPSec processes.

This does leave the whole scheme vulnerable to keying attacks, if the daemon can be

subverted. ISAKMP is probably too complex to run as a trusted service, although it is

difficult to see how else it could run in this scheme.

Coupled with this, the ideas in [1] do not consider the existing (insecure) systems

that are attached to the internal network today. These systems are not manageable

7



O/S IPSec

Host

Card

Network

Figure 2: Bump in the wire

as part of a segregated network, so they would be limited to handling “unclassified”

information. This would arguably make them useless in a corporate setting.

3.3 Bump in the Wire

The above ideas can be extended to include legacy systems too. The approach is to

implement networking as a bump-in-the-wire for the untrusted hosts. The bump-in-

the-wire replaces the inbuilt networking with a trusted plug-in version, implemented in

firmware on a special network card. The card is in fact a minimal computer, running its

own trusted network stack. Instead of a full network stack, the untrusted host has a set

of simple stub functions which call on facilities of the card. This is illustrated in fig. 2.

All key material is maintained securely by the card, and it is never stored in the

memory of the main computer. The system can preserve sensitivity labels across hosts

much as suggested by Choo. The ISAKMP daemon establishes the sensitivity of the

communicating socket endpoints, so labels do not need to be attached to packets in

transit. The boundary conditions for the user and host are determined through the

PKI. Hosts which are not capable of handling sensitive information are prevented from

doing so by the network stack—by embedding it on a card, this can be assured to a

high degree.

The bump-in-the-wire protects the operating system kernel from networking faults.

The host itself is is still vulnerable to faults in the software running on it—the ability

to maintain domains is still important. But the effects of faults in the software can be

contained, through the policy of the bump-in-the-wire. This is effectively isolated from

the rest of the machine. Even in kernel mode, the machine can only talk to the card

through a very limited interface. It should be possible to configure and manage the card

8



entirely from the network side, from trusted hosts on the network.

4 Concluding Remarks

This work has demonstrated a particular weakness of all firewall designs. They can

offer protection against certain types of network attack, but not against others. In

particular a firewall cannot enforce an information security policy on the network it

protects.

As information, and the flow of information, becomes increasingly critical to organ-

isations, they will need to take additional measures to protect that information. These

need to be defence-in-depth measures, which compliment the protection offered by

the firewall. This work has highlighted technology which can provide these defences.

Most of this technology is taken from military information security. The challenge now

is to understand how it can be applied usefully in a business environment.

References

[1] T. Choo. Vaulted vpn: Compartmented virtual private networks on trusted oper-

ating systems. Technical report, HP Laboratories, 1999.

[2] C. Dalton and D. Clarke. Secure partitioned access to local network resources

over the internet. Technical report, HP Laboratories, 1998.

[3] C. Dalton and J. Griffin. Applying military grade security to the internet. Tech-

nical report, HP Laboratories, 1997.

[4] Compartmented mode workstation evaluation criteria, 1991.

[5] Gnu httptunnel. http://www.nocrew.org/software/httptunnel.html.

[6] Jake Hill. Using a protocol tunnel to subvert a firewall. Technical report, BT

Laboratories, 1999.

[7] RFC2616: Hypertext Transfer Protocol—HTTP/1.1.

[8] RFC2401: Security Architecture for the Internet Protocol.

[9] C. E. Landwehr and J. M. Carroll. Hardware requirements for secure computer

systems: A framework. InProc. 1984 IEEE Symposium on Security and Privacy,

apr 1984.

9



[10] Manpage for rsocket(3N). Distributed with libtunnel.

[11] Manpage for socket(3N). Available on most Unix-like systems.

[12] Manpage for tunnel(3N). Distributed with libtunnel.

[13] Q. Zhong. Providing secure environments for untrusted network applications:

with case studies using virtualvault and trusted sendmail proxy. Technical report,

HP Laboratories, 1997.

10


